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Abstract

An efficient numerical method for solving the coupled system of Navier–Stokes equations and equations of motion

of a single spherical particle is presented. It combines a spectral – spectral-element spatial discretization in a cylindrical

domain moving translationally with the free particle and particle equations of motion involving hydrodynamic forces

integrated on the particle surface. The time discretization is semi-implicit with a third-order accurate explicit treatment

of the advective terms and a fully implicit treatment of the remaining linear problem consisting in Stokes-like equations

coupled with the particle equations of motion. It is shown that the fully implicit approach is the only way to account for

very light spheres. Moreover, no reduction of the time step is necessary. The particle equations of motion are re-for-

mulated as a simple system of six linear equations for six unknowns using the fact that the six components combining

the hydrodynamic forces and torques depend linearly on particle translation and angular velocities. They are solved

directly and are thus exactly satisfied at each time step. Numerical tests show that the increase of computing costs

needed to account for the free sphere degrees of freedom remains within about 20% per time step. The accuracy and

resolution independence of the solution are tested at the primary instability threshold and for a strongly supercritical

zigzagging trajectory. A partial validation using available experimental results is also presented. Very satisfactory

accuracy is shown to be obtained with only a very limited number of azimuthal modes.
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1. Introduction

In a recent paper [1] we implemented the spectral azimuthal decomposition combined with the spectral

element discretization proposed by Tomboulides et al. [2] to significantly reduce the computing costs of a

numerical investigation of instabilities in the wake of a fixed sphere. The cost reduction stems from the fact

demonstrated in [1] that the spectral azimuthal modes of the decomposition coincide with the non-linear

modes of the symmetry breaking instability of the wake. As a consequence for a relatively wide interval of

Reynolds numbers (200–500), the series converges so fast that only a very reduced number of modes allow
very high accuracy to be reached. The resulting costs of fully 3D simulations are multiplied by a factor of

only several units as compared to an axisymmetric (2D) computation. This is particularly important for the

investigation of the transition scenario where very long runs are needed to characterize the, often very

complex, dynamics.

The knowledge of the transition scenario of a fixed sphere wake is, however, insufficient to provide clues

about the behavior of freely ascending or falling particles under the combined action of gravity and

buoyancy. The problem attracted recently particular attention in chemical engineering thanks to experi-

ments by Karamanev et al. [3]. It has been shown that especially particles lighter than the surrounding fluid
behave very differently from the classical models. The degrees of freedom of the free sphere and those of the

wake form a system that also behaves differently from that of a fixed sphere wake [4].

The free spherical particle moving in an asymptotically quiescent fluid represents a simple particulate

flow. For this type of flows a wide-spread approach is based on the arbitrary Lagrange–Euler (ALE) [5,6] or

on the distributed-Lagrange-multiplier (DLM) [7] methodology. For a single particle in an infinite fluid

domain the problem can be considerably simplified by working in a moving frame [8] and thus by avoiding

moving geometry. The treatment of light particles such as bubbles or very light solid spheres requires,

however, a careful approach to time discretization. As pointed out in [4], an explicit treatment even fails to
make sense if the particle is infinitely light. As a result, the time splitting approach of the type proposed in

[7] is applied to particles heavier than the fluid. A possible method would consist in using an iterative

algorithm [5]. However, if transitional regimes are to be investigated, special attention has to be paid to the

significant cost increase related to an iterative procedure because of the long runs needed to compute their

dynamics. To fully exploit the closeness of the fixed and free particle problem for the investigation of the

transition scenario in the system of a single free particle moving in a fluid a special approach is needed.

In this paper we present a numerical method to simulate the trajectory and the wake of a single free

spherical particle at computational costs comparable to those of solving the flow past a fixed sphere. The
objectives of the method can be summed up as follows:

1. given a semi-implicit Navier–Stokes solver, not to reduce its time step,

2. account for light and infinitely light particles,

3. satisfy exactly the particle motion equations,

4. keep overall computing costs of a time step comparable to those of the time step of the Navier–Stokes

solver alone.
2. Non-dimensionalized equations and boundary conditions

A way of describing the flow field past a single moving body consists in computing fluid velocities v

measured with respect to a fixed frame projected onto a moving frame attached to the body [8]. For a

spherical particle, the frame need not be rotated to keep a fixed geometry of the computational domain. The

latter thus moves translationally with the velocity of the center of mass of the body denoted u. The non-

dimensionalization of the gravity–buoyancy flows is based on the characteristic acceleration

geff ¼ jq0=q� 1jg where q0 is the density of the solid particle and q that of the fluid, both being considered
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homogeneous. g is the norm of the gravitational acceleration vector. Combined with the characteristic

length scale given by the particle diameter d the acceleration scale geff yields the velocity scale

ðjq0=q� 1jgdÞ1=2 which can be used to non-dimensionalize the Navier–Stokes equations in the following

way:

ov

ot
þ ½ðv� uÞ � r� � v ¼ �r � p þ 1

G
r2 � v ð1Þ

and

r � v ¼ 0: ð2Þ

The latter contain a single parameter playing the role of the inverse of the non-dimensionalized viscosity

G ¼
q0
q � 1
��� ���gd3
h i1=2

m
; ð3Þ

called Galileo number for bubbles [8] or equal to the square root of the Archimedes number introduced in

the context of particulate flows (see e.g. [3]). m is the kinematic viscosity of the fluid assumed to be New-

tonian. The pressure p is considered without the hydrostatic component. Hydrostatic pressure is accounted

for explicitly in the balance of forces acting on the body.

The boundary conditions on the sphere surface S account for the six degrees of freedom of the body, the

movement of which is described by the translational velocity of its center of mass (u) and by the instan-

taneous angular velocity vector (X):

vjS ¼ uþX� rjS; ð4Þ

where rjS is the position vector of a point of the surface. The computational domain is considered to be
cylindrical with the cylinder axis parallel to the vertical direction (see Fig. 1). The axis is oriented opposite

to the gravity–buoyancy acceleration so that it points systematically downstream of the body whether the

latter is heavier or lighter than the fluid, i.e. the unit vector of the domain axis Oz is

i ¼ �sgnðq0=q� 1Þg=kgk. The orientation of the vertical axis of the fixed frame is opposite to that of the
Fig. 1. Geometry of the problem.
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moving frame. In the xyz-frame moving with the sphere, the fluid enters through the upper cylinder basis in

Fig. 1. At this domain boundary the infinite fluid medium is simulated by a uniform velocity condition

v ¼ 0. On the lateral surface and on the outflow cylinder basis (the lower one in Fig. 1) a stress–free

boundary condition p ¼ 0; ov=on ¼ 0 is imposed. This choice of boundary conditions has already been

applied with success in the case of a fixed sphere [1].

The Navier–Stokes equations (1) and (2) are coupled to the solid body equations of motion (non-

dimensionalized in the same way as (1) and (2)) considered in the fixed frame of Fig. 1:

q0

q
du

dt
¼ 6

p
Fflðv; pÞ þ kfix; ð5Þ
q0

q
dX
dt

¼ 60

p
Mfl; ð6Þ

where kfix ¼ �i and Ffl, Mfl are the hydrodynamic force and torque

Ffl ¼
Z
S

f dS; ð7Þ
Mfl ¼
Z
S

rS � f dS; ð8Þ
fi ¼
2

G
Si;jnj � pni ð9Þ
Si;j ¼
ovi
oxj

�
þ ovj

oxi

�
: ð10Þ

The coupled system of the Navier–Stokes equations (1) and (2) and of the motion equations (5) and (6)

depends on only two dimensionless parameters, the Galileo number G and the reduced density q0=q.
3. U(1)-representation of transverse cylindrical and cartesian coordinates

The used Navier–Stokes solver is described in [1]. It is formulated in cylindrical coordinates z; r; h and is

based on a spectral–spectral-element discretization using a spectral Fourier decomposition in the azimuthal

direction h and a spectral-element discretization in the r; z-plane. The main problem of the cylindrical

coordinates are the geometrical singularities arising at the flow axis. It has been shown [9] that if the usual

radial and azimuthal components of velocity, vr and vh, are replaced by complex components ~v� ¼ vr � ivh
the azimuthal modes have a well defined non-singular behavior at the axis. This allows equations with at
worst removable singularities [2] to be obtained. In contrast, the solid body equations of motion will be

expressed in Cartesian coordinates with respect to the fixed frame, therefore the velocities u and X are

systematically given in Cartesian coordinates. This makes it necessary to switch constantly between the

modified cylindrical coordinates of [9] and the Cartesian ones. The transformation is, however, easy to

describe. Let A be an arbitrary vector expressed in Cartesian coordinates and in ordinary cylindrical co-

ordinates by ðAz;Ax;AyÞ and ðAz;Ar;AhÞ, respectively. Introduce A� ¼ Ax � iAy and ~A� ¼ Ar � iAh. This

transformation of the transverse components corresponds to switching from the Oð2Þ-representation to the

Uð1Þ-representation of the rotation group. For brevity we thus refer to A� and ~A� as to Uð1Þ-components.
The transformation relation
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Ar ¼ Ax cos hþ Ay sin h;
Ah ¼ �Ax sin hþ Ay cos h; ð11Þ

then simplifies to

~A� ¼ A�e
�ih: ð12Þ

As a result

~u� ¼ ½ux � iuy �e�ih: ð13Þ

In what follows, vector and scalar products expressed in Uð1Þ-components will be needed. It is easily seen

that a vector product can be expressed as

ðA� BÞ� ¼ �iðAzB� � BzA�Þ;

ðA� BÞz ¼
i

2
ðAþB� � A�BþÞ:

ð14Þ

The same formula holds both in cylindrical and Cartesian coordinates. Similarly a scalar product can be

written as

A � B ¼ AzBz þ
1

2
ðAþB� þ A�BþÞ: ð15Þ
4. Fourier azimuthal decomposition

The decomposition of the flow field into a series of Fourier azimuthal modes is defined as follows:

pðz; r; h; tÞ ¼
Xþ1

m¼�1
pmðz; r; tÞe�imh; ð16Þ
vðz; r; h; tÞ ¼
Xþ1

m¼�1
vmðz; r; tÞe�imh: ð17Þ

It has been shown to be particularly efficient in cases when the tridimensionality originates from axisym-
metry breaking being broken. It requires, of course, a computational domain with rotational symmetry.

The flow field being real, the pressure and velocity modes satisfy the conditions

p�m ¼ pm; vz;�m ¼ vz;m; v�;�m ¼ v�;m; ð18Þ

showing that only mP 0 modes need to be computed. The velocity field and its azimuthal modes are ex-

pressed in Uð1Þ-components, so that vm ¼ ðvz;m; v�;m; vþ;mÞT (see [1] and, more recently [10]). At the axis, the

modes have the following behaviour ðm > 0Þ [2]:

vz;m jr¼0� rm; pm jr¼0� rm; ð19Þ
v�;m jr¼0� rmþ1; ð20Þ
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vþ;m jr¼0� rjm�1j: ð21Þ

Eqs. (1) and (2) are equivalent to the system of equations

ovz;m
ot

þ F̂m;z ¼ � opm
oz

þ mr2
m2vz;m; ð22Þ
ov�;m

ot
þ F̂m;� ¼ � opm

or

�
� m

pm
r

�
þ mr2

ðmþ1Þ2v�;m; ð23Þ
ovþ;m

ot
þ F̂m;þ ¼ � opm

or

�
þ m

pm
r

�
þ mr2

ðm�1Þ2vþ;m; ð24Þ
ry
m � vm ¼ 0; ð25Þ

where ry
m is minus the divergence operator in the m-subspace

�ry
m ¼ o

oz
;
1

r
o

or
r

�
þ m

r
;
1

r
o

or
r � m

r

�
; ð26Þ

adjoint of the gradient operator rm acting on the pressure mode pm as written in Eqs. (22)–(24) and where

r2
m2 ¼ �ry

m � rm: ð27Þ

The scalar product � in Eqs. (25) and (27) is to be understood in the sense of Eq. (15). The boundary

conditions on the sphere surface (4) involve the spatially constant vectors u due to the translation of the
whole domain. Such a spatially uniform velocity field is converted first to cylindrical coordinates and then

transformed to the Uð1Þ-representation. The result is equivalent to the complex azimuthal Fourier de-

composition will all but m ¼ 0; 1 modes. (See Eq. (13) for the transverse components. The axial component

remains independent of h.) If we limit ourselves to mP 0, this yields

uz;m ¼ uzdm;0; ð28Þ
u�;m ¼ 0; ð29Þ
uþ;m ¼ uþdm;1: ð30Þ

Identical relations hold for azimuthal modes of the angular velocity X. By Eq. (12) the cylindrical Uð1Þ-
components of the position vector r are ðz; r; rÞ. As a result, using the vector product (14)

ðX� rÞz;m ¼ i

2
rXþdm;1; ð31Þ
ðX� rÞ�;m ¼ �irXzdm;0; ð32Þ
ðX� rÞþ;m ¼ i rXzdm;0ð � zXþdm;1Þ: ð33Þ

The non-linear terms F̂m couple Eqs. (22)–(24) for different azimuthal wave-numbers m. They are written

explicitly in the Appendix of the paper [1] for the advective term ðv � rÞv. The only modification consists in

replacing this term by ½ðv� uÞ � r�v. This modification is implemented in a straightforward way by sub-
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tracting the spatial constants (28), (30) from the corresponding components of the m ¼ 0 and m ¼ 1 modes

of the first factor in the advective terms.
5. Force and torque

The force and torque (7), (8) depend linearly on the flow field therefore their mth azimuthal mode in-

volves only the mth mode of the flow-field. The Uð1Þ-components of the mth mode of the deformation
velocity tensor are

Szz;m ¼ ovz;m
oz

; ð34Þ
Sz�;m ¼ 1

2

o

or

��
� m

r

�
vz;m þ ov�;m

oz

�
; ð35Þ
S��;m ¼ o

or

�
� mþ 1

r

�
v�;m; ð36Þ
S�þ;m ¼ 1

2

o

or

��
þ mþ 1

r

�
v�;m þ o

or

�
� m� 1

r

�
vþ;m

�
; ð37Þ
Sþþ;m ¼ o

or

�
þ m� 1

r

�
vþ;m: ð38Þ

By Eqs. (19)–(21) there are, at worst, removable singularities at the axis r ¼ 0.

The cylindrical Uð1Þ-components of the force per unit surface are then

~fz;m ¼ 2lSzz;mð � pÞnz þ l Sz�;mð þ Szþ;mÞnr; ð39Þ
~f�;m ¼ 2lSz�;mnz þ lðS�þ;m½ þ S��;mÞ � p�nr; ð40Þ
~fþ;m ¼ 2lSzþ;mnz þ lðS�þ;m½ þ Sþþ;mÞ � p�nr; ð41Þ
where nz and nr are the axial and radial coordinates of the normal to the surface. Expressions (39)–(41)

result from the contraction of the deformation velocity tensor (34)–(38) by the components of the normal

vector nz and n�. The surface being axisymmetric, nh ¼ 0 and n� ¼ nr.
The torque per unit surface is now given by

~mz;m ¼ ir
2

~f�;m

�
� ~fþ;m

�
; ð42Þ
~m�;m ¼ i r ~fz;m
�

� z ~f�;m

�
; ð43Þ
~mþ;m ¼ i z ~fþ;m

�
� r ~fz;m

�
: ð44Þ

The solid body motion equations being expressed in Cartesian coordinates these quantities have to be

transformed via Eq. (12). This brings about a factor e�ih for the Cartesian � components. After integration
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over h, only the mode m ¼ 0 yields a non-zero contribution to the axial component and the mode m ¼ 1 to

the � components of the total force and torque integrated over the whole sphere surface

Fz ¼ 2p
Z

fz;0 ds; ð45Þ
F� ¼ 2p
Z

�~f þ;1 ds; ð46Þ
Fþ ¼ 2p
Z

~fþ;1 ds; ð47Þ
Mz ¼ 2p
Z

mz;0 ds; ð48Þ
M� ¼ 2p
Z

�~mþ;1 ds; ð49Þ
Mþ ¼ 2p
Z

~mþ;1 ds: ð50Þ

The integrals obtained are one-dimensional curvilinear quadratures along spectral element boundaries in

the z; r-plane evaluated by the associated Gauss–Lobatto integration.
6. Time discretization

The time discretization is based on the time splitting scheme for the Navier–Stokes equations (22)–(24)

presented in [1]. At the first step, the advective terms are treated explicitly using the third order Adams–

Bashforth discretization. This yields a linear Stokes-like problem coupled to the equations of motion which

can be expressed schematically as

I
dY

dt
¼ MYþG; ð51Þ

where

Y �
U

P
Z

2
4

3
5; M �

L D H

Dy 0 0
B C 0

2
4

3
5; G �

N

0
K

2
4

3
5; ð52Þ

and I is equal block-wise to diagð1; 0; q0=q1Þ. U and P stand, respectively, for the discretized velocity and

pressure field and Z � ðu;XÞT is the six-dimensional array of sphere velocities. L discretizes the diffusion

terms, D the pressure gradient, H the boundary conditions on the sphere surface, B and C the viscous and

pressure terms of the hydrodynamic force and torque. The inhomogeneous term includes the buoyancy

force K ¼ ðk; 0ÞT and the explicitly treated non-linear terms N. This is a standard matrix problem asso-
ciated to particulate flow equations (see [5,7]). While, for the reasons of numerical stability, an implicit

treatment is usually desirable, this objective is either paid for by an expensive iterative procedure (as in [5],

the iterative procedure allowing the non-linear terms to be included into the iterations in this case) or is
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subject to some compromise. For example, in [7] the treatment of repulsive forces requires most attention

and reduces considerably the time step. As a consequence, for particles heavier than the fluid, an explicit

treatment of hydrodynamic forces is found satisfactory.

In our case, however, if very light particles are to be accounted for without restriction of the time step, it

is obvious that an explicit treatment of Eqs. (5) and (6) will not work. For infinitely light particles the

equations of motion of the solid body (5), (6) or, equivalently, the last six equations of the system (51), play

the same role of constraint as the continuity equation. In that case, the implicit treatment is the only

treatment possible. As for the diffusion terms, the fully implicit treatment seems to be rather commonly
used in particulate flows (see e.g. [7]). For relatively low viscosities, i.e., in the present case, high Galileo

numbers (in the hundreds) and for a fine discretization of the boundary layer at the sphere surface (the

nearest collocation point lies 0.01d from the sphere surface) implying a rather short time step a first order

fully implicit treatment of the diffusion terms provides good accuracy (see [1]) and guarantees good

numerical stability. To treat problem (51) in the fully implicit way

I
Yðnþ1Þ � YðnÞ

Dt
¼ MYðnþ1Þ þG; ð53Þ

we first remark that the coupling between the flow-field and the motion equations is effective only for the

m ¼ 0 and m ¼ 1 modes. To obtain the sphere velocities, system (53) needs to be solved merely with account

of these two modes. The solution is split into two terms

vðnþ1Þ ¼ v
ðnþ1Þ
0 þ Dvðnþ1Þ; ð54Þ
pðnþ1Þ ¼ pðnþ1Þ
0 þ Dpðnþ1Þ; ð55Þ

where v
ðnþ1Þ
0 (resp. pðnþ1Þ

0 ) is the solution of the problem with the boundary conditions involving the solid
body velocities obtained at the nth step and Dvðnþ1Þ (resp. Dpðnþ1Þ) is the correction accounting for the

variation of the boundary conditions. If we denote U
ðnþ1Þ
0 ;P

ðnþ1Þ
0 and DUðnþ1Þ;DPðnþ1Þ the discretized

counterparts of the fields represented, respectively, by the first and second terms on the RHS of Eqs. (54)

and (55), the intermediate discretized solution satisfies (see Eq. (52) for details of notation)

1

Dt
U

ðnþ1Þ
0 �Un

0

� �
¼ L D

Dy 0

� �
U

ðnþ1Þ
0

P
ðnþ1Þ
0

" #
þ HZðnÞ þN

0

� �
; ð56Þ

where Un and ZðnÞ are the known discretized flow field and sphere velocities obtained at the previous time

step. The corrections are the solution of a linear system coupling the flow field corrections DUðnþ1Þ, DPðnþ1Þ

and the velocity correction

X ¼ uðnþ1Þ � uðnÞ

Xðnþ1Þ �XðnÞ

� �
: ð57Þ

This system reads

1

Dt
DUðnþ1Þ

0

� �
¼ L D

Dy 0

� �
DUðnþ1Þ

DPðnþ1Þ

� �
þ HX

0

� �
; ð58Þ
q0

q
1

Dt
X ¼ BDUðnþ1Þ þ CDPðnþ1Þ þ R; ð59Þ

where R is the residual of the motion equations in which the forces are calculated using the intermediate

flow-field
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R ¼
6
pFflðvðnþ1Þ

0 ; pðnþ1Þ
0 Þ þ kfix

60
p Mflðvðnþ1Þ

0 ; pðnþ1Þ
0 Þ

 !
: ð60Þ

Eq. (56) is the Stokes-like problem as it would anyway be solved by the Navier–Stokes solver. The purpose

being the computation of residual (60), i.e. the computation of the hydrodynamic force and torque, for

which only azimuthal modes m ¼ 0; 1 are needed, the Stokes-like problem (56) can be restricted to azi-

muthal modes m ¼ 0; 1.
Eq. (58) is the discretized counterpart of the Stokes-like problem

Dvðnþ1Þ

Dt
þr � Dpðnþ1Þ þ 1

G
r2 � Dvðnþ1Þ ¼ 0; ð61Þ
r � Dvðnþ1Þ ¼ 0; ð62Þ

with the boundary conditions

DvjS ¼
1 0 0 0 yjS �xjS
0 1 0 �yjS 0 zjS
0 0 1 xjS �zjS 0

2
4

3
5X; ð63Þ

where ðzjS; xjS; yjSÞ is the position of a given point on the sphere surface. Writing formally the solution of

Eq. (58) as a function of the the velocity updates X in the form DUðnþ1Þ ¼ SX, DPðnþ1Þ ¼ TX and denoting A
the 6� 6 matrix BSþ CT we arrive at a simple linear relation between residual (60) and the velocity

correction

q0

q
1

Dt

�
� A

�
X ¼ R: ð64Þ

The six columns of the matrix A are computed as the forces and torques in response to unit variations of

translation velocities in each spatial direction and of angular velocities around the three axes. These

variations yield the six different boundary conditions described by the columns of the matrix on the RHS of

Eq. (63). Again, for the computation of forces only the modes m ¼ 0; 1 are needed. In other words, we solve

the Stokes-like problem (61)–(63) (restricted to m ¼ 0; 1) for these six distinct boundary conditions. The

matrix A does not vary if Dt is not modified. It has to be recalculated only if the time step changes to meet

the CFL criterion. This occurs very rarely, typically only at beginning of the acceleration if a trajectory

starting at rest is computed. A run of tens thousands of time steps may involve just one computation of the
matrix A.

The new sphere velocities being known, problem (61)–(63) is finally solved for all desired azimuthal

modes. If the azimuthal discretization is truncated at, say, mmax ¼ 6 the preliminary computation of the

residual (60) involving only modes m ¼ 0; 1 represents only a fraction of the overall cost of a time step.
7. Numerical tests

In the absence of available bibliographical references (the only numerical paper dealing with a closely

related subject is [8]) the validation of the algorithm is based on:

(i) reference to the well-known results concerning the fixed sphere wake (validated themselves in [1]),

(ii) proofs of numerical convergence of sample simulation results and on
(iii) an experimental validation in a laboratory water tank [11].
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In the same way as in [1] the physics of the problem makes it logical to proceed in the order of increasing

complexity of the simulated regimes.

7.1. Primary bifurcation

The primary bifurcation of the system represented by the sphere wake coupled with the degrees of

freedom of the sphere has been investigated in a recent paper [4]. The method of linear analysis of the

axisymmetric flow is described in [1]. The implementation of the spectral azimuthal expansion allows for an

arbitrary truncation. In particular it is possible to reduce the expansion to a single azimuthal mode m 6¼ 0.

This removes the coupling between the investigated mode and the axisymmetric one (m ¼ 0) filled with the

precalculated base flow and allows to investigate the most unstable eigenvalue separately in each m-sub-
space into which the eigenvalue problem has been shown to break up. As can be seen from Eqs. (30), (31),
(33), (46), (47), (49), (50), for a free sphere, the transverse velocity components are coupled to the m ¼ 1

mode. As shown in [4] the m ¼ 1 azimuthal mode remains the most unstable: the lighter the sphere the more

the degrees of freedom of the sphere enhance the instability. The value of the most unstable eigenvalue or,

equivalently, the threshold of the primary bifurcation provides a good test of the quality of the spectral

element mesh in the r–z-plane. It is not surprising that the same mesh as that used in [1] for analyzing the

instability of the fixed sphere wake yields a good accuracy. For very dense spheres q0=q ! 1, for which

the degrees of freedom of the sphere play no role a critical Galileo number Gcrit ¼ 159:3 equivalent to the

asymptotic Reynolds number of 211.9, very close the widely adopted value [12], is obtained. For light
spheres, for which no reference for comparison exists yet, the values published in [4] (Gcrit ¼ 156:1 for

q0=q ¼ 0:5 and Gcrit ¼ 155:8 for q0=q ¼ 0) have been tested for insensitivity to further mesh refinement and

domain extension. The explanation why the mesh used for the fixed sphere wake is so satisfactory comes

from the fact that the unstable modes of the fixed sphere and the fluid part of the free sphere mode (the

unstable mode represented in terms of the fluid velocity and pressure field) are very similar (see Fig. 2) and

the refined subdomain of the ‘‘reference’’ mesh represented in Fig. 6(a) covers well the extent of the mode

whatever the reduced density.

In [4] it has been shown that the primary bifurcation leads to a non-axisymmetric steady state charac-
terized by an asymptotically straight and oblique trajectory. An experiment we set up together with

Bouchet [11] in our laboratory has been designed to study the trajectories of freely ascending or falling
(a)

(b)

Fig. 2. Iso-values of axial velocity the most unstable linear mode mode (m ¼ 1) computed at the threshold of the primary instability

(respectively at G ¼ 156 and G ¼ 160) for q0=q ¼ 0 (a) and q0=q ¼ 1 (b). The modes are normalized so that the maximum is equal

to 1.
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spheres experimentally. The fine tuning of the experiment being somewhat tricky, at this moment we have

only several more or less random samples of different regimes in the parameter space ðq0=q;GÞ at our

disposal. Fortunately, there is an easily exploitable sample of trajectories corresponding precisely to this

steady oblique regime. The experimental sphere (a polypropylene bearing ball of 3.16 mm of diameter and

of density q0 ¼ 890 kg/m3, q0=q ¼ 0:89) is released at the bottom of a water tank of section 0.5 m times 0.5

and 2.5 m of height (see [11] for more details). The viscosity of water is driven by its temperature. At 17.6 �C
we reached a Galileo number of 173. The trajectory is obtained by processing of images of two cameras

tracking the particle. The processing of two images allows the trajectories to be fully determined in 3D. For
exactly these same values of problem parameters we computed a trajectory starting at rest and reaching the

asymptotic steady regime. Both the experimental and the numerical results are plotted in Fig. 3. The

trajectories are represented in Fig. 3(a). The onset of instability is better visible on the plot of the horizontal

velocity versus time (Fig. 3(b)). The experimental trajectory does not start exactly at rest. The sphere is

initially held to the extremity of a capillary tube by depression. At the moment when it is released by an

increase of pressure in the tube, a slight push of a simultaneously escaping small air bubble cannot be

avoided. Moreover, the particle tracking does not start exactly at the point of release. The agreement is very

satisfactory. Both the simulation and the image processing capture also the oscillatory transients due to the
proximity of the secondary Hopf bifurcation. The vertical asymptotic velocity of the sphere is 1.34 in the

units defined in Section 2. Note that the Strouhal number of these oscillations (St ¼ fd=U1) is 0.040, i.e.

significantly smaller than for the wake of a fixed sphere. This trend is in a rather good agreement with the

experimental result of [13] concerning spherical bubbles with a not perfectly clean interphase. It is widely

accepted that such bubbles can be assimilated to infinitely light solid spheres.

7.2. Strongly supercritical trajectories

In terms of trajectories, the primary bifurcation yields an oblique straight-line ascension of light spheres.

The simulations and the preliminary experiments [4,11] show that a secondary Hopf bifurcation follows the

regular primary one. It generates a wavy oblique trajectory which ends up by switching to a zigzagging

vertical motion as soon as the amplitude of the secondary oscillations of the horizontal velocity com-
pensates the mean value. This rather strongly supercritical regime (see Figs. 4 and 5) at which new inter-

esting physics can be investigated has been taken as a basis for further numerical tests. The influence of
Fig. 3. Experimental (solid line) and numerical trajectory (dashed line) for a density ratio q0=q ¼ 0:89 and G ¼ 173. (a) The trajectory,

(b) the horizontal projection of the velocity vs. time (in units defined in Section 2).
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Fig. 4. ‘‘Zigzagging’’ trajectory obtained using the ‘‘final’’ mesh of Fig. 6, for G ¼ 200 and q0=q ¼ 0:5 (mmax ¼ 6).

Fig. 5. Horizontal velocity of the trajectory described in Fig. 4.
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various parameters of the discretization on the results of the simulation at G ¼ 200 and for the density ratio

q0=q ¼ 0:5 has been studied.

7.2.1. Additional spectral element mesh testing

The z–r-plane mesh of [1] used for the investigation of the primary bifurcation is chosen as the ‘‘reference

mesh’’ (see Fig. 6). Note that only the spectral-elements are represented, not the internal collocation points.

In our simulation, each spectral element contains 6� 6 collocations points. The dependence on the number

of collocation points was tested in [1]). The stronger non-linearities might result in a very oblique wake for

which the lateral boundary might influence the simulation results. In the absence of experimental or other

numerical data relevant for this regime, we submitted the numerical results to additional tests of numerical

convergence. The main issue being the capture of the increasingly oblique wake we focus on two para-

meters: the role of the lateral numerical boundaries and the number of azimuthal modes needed to reach
convergence.



Fig. 6. Breakup into spectral elements tested. In all cases the mesh extends 12 sphere diameters upstream and 25 diameters down-

stream of the sphere center. (a) Reference mesh (radius 8d), (b) refined mesh (radius 8d), (c) large mesh (radius 12d) and (d) final mesh

(radius 8d).
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As for the lateral ‘‘confinement’’, we test a ‘‘large’’ mesh (186 elements) with a radius of 12 diameters
(compared to 8 diameters) (Fig. 6). Similarly, steeper gradients might not be sufficiently resolved if they fall

onto the coarse part of the mesh. A ‘‘fine’’ mesh (Fig. 6) defined within the reference domain with addi-

tional elements placed along the lateral limits of the wake (203 elements compared to 169) is also tested. The

results are presented in Table 1.

If the meshes were far from optimal the adjustments tested above would bring up non-negligible changes

in the results. This is not the case. Table 1 shows that increasing the domain or refining the mesh does not

influence the results. The reference mesh allows to obtain a good accuracy but a stability problem occurs

during some calculations. The polynomial interpolation in large elements at outer boundary combined with
Table 1

Amplitude and period of the sphere horizontal velocity for different spectral element meshes, for six collocation points in each spatial

direction and mmax ¼ 3 in the zigzagging regime at G ¼ 200 and for q0=q ¼ 0:5

Mesh Amplitude Period, T

Reference 0.2396 30.8677

Fine 0.2396 30.8711

Large 0.2396 30.8818

Final 0.2394 30.9120
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the no-stress boundary condition appear to generate numerical instabilities in strongly supercritical re-

gimes. The problem has been resolved by adding a finer layer of spectral elements along the outer boundary

as shown in Fig. 6(d).

The characteristics presented in Table 1 are not substantially modified if 8� 8 instead of 6� 6 collo-

cation points per element are used while the computing costs increase roughly by a factor of three. Indeed,

already in paper [1] it appeared to be better to keep the number of collocation points low and distribute the

computational effort optimally throughout the domain by putting small elements in regions where velocity

gradients are significant.

7.2.2. Convergence of the azimuthal Fourier series

The trajectory and horizontal velocity represented in Figs. 4 and 5 have been obtained on the ‘‘final’’

mesh with the azimuthal decomposition truncated at mmax ¼ 6. For an increasing number of azimuthal

modes the following parameters are tested: the amplitude of the horizontal velocity, the period and the

amplitude of the secondary peak appearing every time the trajectory crosses the mean vertical direction.

The azimuthal Fourier modes coincide with the non-linear modes of the primary instability. It has thus to

be expected that at higher supercritical regimes the convergence of the series will be slower. The results are
presented in Table 2.

As expected, unlike for a fixed sphere wake, for which four azimuthal modes allowed to obtain the

secondary instability amplitude with an extremely good precision (better than 1%), more azimuthal modes

are needed to simulate the regime represented in Figs. 4 and 5 with a comparable accuracy. The conver-

gence of the series remains, however, very good.

7.3. Chaotic regime

Experiments [14] and [11] indicate that a chaotic behavior is ultimately reached when G increases. There

is, so far, no existing reference for validating the chaotic trajectories quantitatively but the algorithm is

manifestly able to reproduce such a behavior. In Fig. 7 a trajectory of light sphere (q0=q ¼ 0:5) in a chaotic

regime at G ¼ 220 is plotted. Note the intermittent nature of the trajectory also remarked in [14].

7.4. Computational costs

The simulation of the fixed sphere, discussed in [1], is used as a reference case in terms of computational
cost. The main difference between the fixed and free sphere cases, in terms of algorithm, consists in solving

twice the Stokes-like problem for the modes 0 and 1 in the free sphere case. With, say, seven azimuthal

modes (0–6) accounted for, the CPU time needed for one time step decreases by only 15.0% if the com-

putation of the sphere velocities is switched off. This can be considered as a measure of the real computing
Table 2

Evolution of the characteristics of the sphere horizontal velocity with increasing number of azimuthal modes, G ¼ 200, q0=q ¼ 0:5,

‘‘reference’’ mesh of Fig. 6

Azimuthal mode number Amplitude Period, T

3 0.2396 30.8677

4 0.2419 29.2800

5 0.2397 29.0029

6 0.2345 29.1818

8 0.2311 29.3489

10 0.2299 29.4560



Fig. 7. Chaotic and tridimensional trajectory at G ¼ 220 and q0=q ¼ 0:5.
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cost increase because the time step is the same whether the sphere is fixed or free. Of course, due to the

variable number of internal iterations of the conjugate gradient solver of the pressure and velocity equa-

tions, this value is only indicative. A more realistic comparison consists in solving the fixed- and the free-

sphere problems at the same mean Reynolds number. For heavy spheres the hydrodynamic behavior is not

very different and the comparison gives a reasonable idea of the cost of the computation of the degrees of

freedom of the particle. At G ¼ 200 (mean asymptotic Re ¼ 280) and for q0=q ¼ 10 the CPU costs are 20%

higher for the free sphere. The necessity to keep the increase of computing costs within limits is clearly

illustrated if the physical time scales are considered. At G ¼ 200 one period of the wake and trajectory
oscillation of a light sphere q0=q < 1 (see Figs. 4 and 5) is about 5.25 times longer than the period of a

heavy sphere q0=q ¼ 10 or a fixed sphere. The simulation of one period in Figs. 4 and 5 on a Pentium4 1.8

GHz processor lasts 19h. For the simulation represented in Fig. 7 representing a physical time equivalent to

58 periods of a fixed sphere wake, 162 CPU hours were necessary. Given the low cost of PC processors such

a study is easily feasible. A meta-computing network appeared to be particularly suitable for the purpose.

The investigation has to be carried out in a two-dimensional parameter space and the physics of the

transition appears to be rather complex so that its presentation does not fit into the scope of this paper.
8. Conclusion

In this paper we tackled the problem of the simulation of a single freely moving particle in transitional

regimes. In particular light particles present a physically interesting behavior while being potentially dif-

ficult to account for. The necessity to ensure good space-time resolution and to provide reliable data on the

varying and complex dynamics characterizing the transition adds special requirements on the numerical

efficiency of the numerical method. We showed that, in transitional regimes, the efficiency of the simulation
of light particles depends on the possibility of a fully implicit treatment of the particle equations of motion.

This treatment is implemented using a predictor-corrector approach based on the direct solution of the

particle velocities. Numerical tests applied to the simulation of the trajectory of a spherical particle show

that the increase of costs due to accounting for the coupling between the flow field and the particle motion

represents only about 20%, and even infinitely light particles are accounted for at the same costs.
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The implicit approach to the particle equations of motion can be transposed in a straightforward manner

to other particle configurations with general 3D geometries. The paper describes how to treat the coupling

between the flow equations and the equations of motion of a particle and draws attention to the problem of

numerical stability of the equations of motion for light particles. The problem is of general character and

the proposed solution is independent of the underlying Navier–Stokes solver. The presentation is based, of

course, on a concrete implementation for one particular NS solver, however, mainly the general, NS solver

independent, features are focused upon. The described implementation aims at investigating a very special

physics: that of the transition in the system of a free sphere freely moving in a fluid under the action of
gravity. This physics is captured in an optimal way using a spectral azimuthal decomposition. It is this

particular method of discretization that makes the resulting code limited in the variety of application on

one hand and extremely efficient on the other hand. If other applications are aimed at, the underlying NS

solver has to be adapted. Whenever possible, it is obviously preferable to avoid moving meshes. For non-

spherical but axisymmetric bodies, a rotating system is the way out – see e.g. [8]. In this way, the interesting

problem of a free falling solid ellipsoid could be tackled similarly as in [8] for a non-deformable bubble. The

price paid is the necessity to use a full spherical computational domain. If, moreover, the advantage of the

axisymmetric geometry is lost the cost increase may be higher, but not more than 100% (if the solution of
the Stokes-like problem (56) can no longer benefit from the azimuthal decomposition). To deal with two or

more particles, moving meshes cannot be avoided. In that case, a solver of the type ALE or DLM cited in

the introduction is probably a very good choice. Even these solvers will, however, either fail if light particle

equations of motion are not dealt with implicitly, or, be unnecessarily costly if the implicit formulation is

enforced iteratively. We explained the reasons and proposed a way out of this difficulty.
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